General Statistics

Author

Dave Bridges

Published

May 9, 2014

Show the code
library(knitr)
#figures makde will go to directory called figures, will make them as both png and pdf files 
opts_chunk$set(fig.path='figures/',dev=c('png','pdf'))
options(scipen = 2, digits = 3)
# set echo and message to TRUE if you want to display code blocks and code output respectively

knitr::knit_hooks$set(inline = function(x) {
  knitr:::format_sci(x, 'md')
})


superpose.eb <- function (x, y, ebl, ebu = ebl, length = 0.08, ...)
  arrows(x, y + ebu, x, y - ebl, angle = 90, code = 3,
  length = length, ...)

  
se <- function(x) sd(x, na.rm=T)/sqrt(length(x))

#load these packages, nearly always needed
library(tidyr)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
Show the code
# sets maize and blue color scheme
color.scheme <- c('#00274c', '#ffcb05')

General Statistical Methods

There are several important concepts that we will adhere to in our group. These involve design considerations, execution considerations and analysis concerns. The standard for our field is null hypothesis significance testing, which means that we are generally comparing our data to a null hypothesis, generating an effect size and a p-value. As a general rule, we report both of these both within our Rmd/qmd scripts, and in our publications.

We generally use an \(\alpha\) of \(p<0.05\) to determine significance, which means that (if true) we are rejecting the null hypothesis. This is known as null hypothesis significance testing.

An alternative approach is to use a Bayesian approach, described in more detail in this document

Pairwise Testing

If you have two groups (and two groups only) that you want to know if they are different, you will normally want to do a pairwise test. This is not the case if you have paired data (before and after for example). The most common of these is something called a Student’s t-test, but this test has two key assumptions:

  • The data are normally distributed
  • The two groups have equal variance

Testing the Assumptions

Best practice is to first test for normality, and if that test passes, to then test for equal variance

Testing Normality

To test normality, we use a Shapiro-Wilk test (details on Wikipedia on each of your two groups). Below is an example where there are two groups:

Show the code
#create seed for reproducibility
set.seed(1265)
test.data <- tibble(Treatment=c(rep("Experiment",6), rep("Control",6)),
           Result = rnorm(n=12, mean=10, sd=3))
#test.data$Treatment <- as.factor(test.data$Treatment)
kable(test.data, caption="The test data used in the following examples")
The test data used in the following examples
Treatment Result
Experiment 11.26
Experiment 8.33
Experiment 9.94
Experiment 11.83
Experiment 6.56
Experiment 11.41
Control 8.89
Control 11.59
Control 9.39
Control 8.74
Control 6.31
Control 7.82

Each of the two groups, in this case Test and Control must have Shapiro-Wilk tests done separately. Some sample code for this is below (requires dplyr to be loaded):

Show the code
#filter only for the control data
control.data <- filter(test.data, Treatment=="Control")
#The broom package makes the results of the test appear in a table, with the tidy command
library(broom)

#run the Shapiro-Wilk test on the values
shapiro.test(control.data$Result) %>% tidy %>% kable(caption="Shapiro-Wilk test for normality of control data")
Shapiro-Wilk test for normality of control data
statistic p.value method
0.968 0.88 Shapiro-Wilk normality test
Show the code
experiment.data <- filter(test.data, Treatment=="Experiment")
shapiro.test(test.data$Result) %>% tidy %>% kable(caption="Shapiro-Wilk test for normality of the test data")
Shapiro-Wilk test for normality of the test data
statistic p.value method
0.93 0.377 Shapiro-Wilk normality test

Based on these results, since both p-values are >0.05 we do not reject the presumption of normality and can go on. If one or more of the p-values were less than 0.05 we would then use a Mann-Whitney test (also known as a Wilcoxon rank sum test) will be done, see below for more details.

Testing for Equal Variance

We generally use the car package which contains code for Levene’s Test to see if two groups can be assumed to have equal variance. For more details see Fox and Weisberg (2019):

Show the code
#load the car package
library(car)
Loading required package: carData

Attaching package: 'car'
The following object is masked from 'package:dplyr':

    recode
Show the code
#runs the test, grouping by the Treatment variable
leveneTest(Result ~ Treatment, data=test.data) %>% tidy %>% kable(caption="Levene's test on test data")
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
Levene’s test on test data
statistic p.value df df.residual
0.368 0.558 1 10

Performing the Appropriate Pairwise Test

The logic to follow is:

  • If the Shapiro-Wilk test passes, do Levene’s test. If it fails for either group, move on to a Wilcoxon Rank Sum Test.
  • If Levene’s test passes, do a Student’s t Test, which assumes equal variance.
  • If Levene’s test fails, do a Welch’s t Test, which does not assume equal variance.

Student’s t Test

Show the code
#The default for t.test in R is Welch's, so you need to set the var.equal variable to be TRUE
t.test(Result~Treatment,data=test.data, var.equal=T) %>% tidy %>% kable(caption="Student's t test for test data")
Student’s t test for test data
estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative
-1.1 8.79 9.89 -0.992 0.345 10 -3.56 1.37 Two Sample t-test two.sided

Welch’s t Test

Show the code
#The default for t.test in R is Welch's, so you need to set the var.equal variable to be FALSE, or leave the default
t.test(Result~Treatment,data=test.data, var.equal=F) %>% tidy %>% kable(caption="Welch's t test for test data")
Welch’s t test for test data
estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative
-1.1 8.79 9.89 -0.992 0.345 9.72 -3.57 1.38 Welch Two Sample t-test two.sided

Wilcoxon Rank Sum Test

Show the code
# no need to specify anything about variance
wilcox.test(Result~Treatment,data=test.data) %>% tidy %>% kable(caption="Mann-Whitney test for test data")
Mann-Whitney test for test data
statistic p.value method alternative
12 0.394 Wilcoxon rank sum exact test two.sided

Corrections for Multiple Observations

The best illustration I have seen for the need for multiple observation corrections is this cartoon from XKCD (see http://xkcd.com/882/):

Significance by XKCD. Image is from http://imgs.xkcd.com/comics/significant.png

Any conceptually coherent set of observations must therefore be corrected for multiple observations. In most cases, we will use the method of Benjamini and Hochberg (1995) since our p-values are not entirely independent. Some sample code for this is here:

Show the code
p.values <- c(0.023, 0.043, 0.056, 0.421, 0.012)
data.frame(unadjusted = p.values, adjusted=p.adjust(p.values, method="BH")) %>% 
  kable(caption="Effects of adjusting p-values by the method of Benjamini-Hochberg")
Effects of adjusting p-values by the method of Benjamini-Hochberg
unadjusted adjusted
0.023 0.057
0.043 0.070
0.056 0.070
0.421 0.421
0.012 0.057

Session Information

Show the code
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-apple-darwin20
Running under: macOS Sonoma 14.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Detroit
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] car_3.1-2     carData_3.0-5 broom_1.0.6   dplyr_1.1.4   tidyr_1.3.1  
[6] knitr_1.48   

loaded via a namespace (and not attached):
 [1] vctrs_0.6.5       cli_3.6.3         rlang_1.1.4       xfun_0.47        
 [5] purrr_1.0.2       generics_0.1.3    jsonlite_1.8.8    glue_1.7.0       
 [9] backports_1.5.0   htmltools_0.5.8.1 fansi_1.0.6       rmarkdown_2.28   
[13] abind_1.4-8       evaluate_0.24.0   tibble_3.2.1      fastmap_1.2.0    
[17] yaml_2.3.10       lifecycle_1.0.4   compiler_4.4.1    htmlwidgets_1.6.4
[21] pkgconfig_2.0.3   rstudioapi_0.16.0 digest_0.6.37     R6_2.5.1         
[25] tidyselect_1.2.1  utf8_1.2.4        pillar_1.9.0      magrittr_2.0.3   
[29] withr_3.0.1       tools_4.4.1      

References

Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society. Series B 57 (1): 289–300.
Fox, John, and Sanford Weisberg. 2019. An R Companion to Applied Regression. Third. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.