Examples of Bayesian Analyses

Author

Dave Bridges

Published

August 12, 2024

Some Common Analyses

As a general rule we do four analyses fairly commonly in the Bridges Lab, summarized here based on the nature of the independent and dependent variables:

Dependent Variable Independent Variable Analysis
Continuous Continuous Linear Regression
Continuous Counts (Yes/No or Groups) Binomial Regression
Counts (Yes/No or Groups) Continuous Pairwise Test (t-test/Mann-Whitney/ANOVA)
Counts (Yes/No or Groups) Counts (Yes/No or Groups) \(\chi^2\) or Fisher’s Test

Lets take a Bayesian approach to each of these using the Mtcars dataset, which looks like this after a bit of fiddling.

library(knitr)
library(dplyr)
mtcars.data <- 
  as.data.frame(mtcars) %>%
  mutate(transmission = factor(case_when(am==0~"automatic",
                           am==1~"manual")),
         engine=factor(case_when(vs==0~"V-Shaped",
                       vs==1~"Straight")),
         cylindars=factor(cyl))
  
kable(mtcars.data,caption="The mtcars dataset")
The mtcars dataset
mpg cyl disp hp drat wt qsec vs am gear carb transmission engine cylindars
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 manual V-Shaped 6
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 manual V-Shaped 6
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 manual Straight 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 automatic Straight 6
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 automatic V-Shaped 8
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 automatic Straight 6
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 automatic V-Shaped 8
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 automatic Straight 4
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 automatic Straight 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 automatic Straight 6
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 automatic Straight 6
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 automatic V-Shaped 8
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 automatic V-Shaped 8
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 automatic V-Shaped 8
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 automatic V-Shaped 8
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 automatic V-Shaped 8
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 automatic V-Shaped 8
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 manual Straight 4
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 manual Straight 4
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 manual Straight 4
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 automatic Straight 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 automatic V-Shaped 8
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 automatic V-Shaped 8
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 automatic V-Shaped 8
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 automatic V-Shaped 8
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 manual Straight 4
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 manual V-Shaped 4
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 manual Straight 4
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 manual V-Shaped 8
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 manual V-Shaped 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 manual V-Shaped 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 manual Straight 4

What is a Pairwise Testing Equivalent?

Lets start by testing if there is a relationship between one quantitative variables, the mpg (miles per gallon) and a categorical variable - transmission (manual or automatic transmission) using the default priors

library(brms)
pairwise.fit <- brm(mpg~transmission,data=mtcars.data,
                    sample_prior = TRUE)
library(broom.mixed)
tidy(pairwise.fit) %>% kable(caption="Summary of model fit for mpg versus transmission")
Summary of model fit for mpg versus transmission
effect component group term estimate std.error conf.low conf.high
fixed cond NA (Intercept) 17.089490 1.1440067 14.874103 19.262258
fixed cond NA transmissionmanual 7.277792 1.8424683 3.713655 10.912369
ran_pars cond Residual sd__Observation 5.010808 0.6489197 3.932789 6.461536
ran_pars cond Residual prior_sigma__NA.NA.prior_sigma 5.893894 6.9432256 0.161323 23.833297
plot(pairwise.fit)

hypothesis(pairwise.fit, "transmissionmanual>0") # testing for whether manual tramsmission has higher mpg
Hypothesis Tests for class b:
                Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
1 (transmissionmanual) > 0     7.28      1.84     4.23    10.32        Inf
  Post.Prob Star
1         1    *
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.

As you can see, this analysis estimates that the manual transmission has a 7.2777915 higher mpg (\(\pm\) 1.8424683) with a very high Bayes Factor () and posterior probability (1).

Looking at the model diagnostics three things are relevant:

  • Was there convergence in the model. This is measured by Rhat (also known as potential scale reduction factor (PSRF), or the Gelman-Rubin statistic). It should be between 0.99 and 1.01.
  • What was the ESS (effective sample size, not a great name, but a measure of the number of samples of the posterior distribution). Generally, an \(ESS > 400\) is considered good for reliable estimates. This is most important for the random effects rather than the fixed effects.

Lets take a look at these:

kable(data.frame(
  Parameter = names(rhat(pairwise.fit)),
  Rhat = format(rhat(pairwise.fit), nsmall = 5)),
caption="Rhat values for model testing association between mpg and transmission (should b between 0.99 and 1.01 for convergence",
row.names = F)
Rhat values for model testing association between mpg and transmission (should b between 0.99 and 1.01 for convergence
Parameter Rhat
b_Intercept 1.000238
b_transmissionmanual 1.000444
sigma 1.000516
Intercept 1.000369
prior_Intercept 1.000925
prior_sigma 1.000403
lprior 1.000087
lp__ 1.001772
tidy(pairwise.fit, effects = "ran_pars", ess = TRUE) %>% kable(caption="Model random effects for mpg vs transmission")
Model random effects for mpg vs transmission
effect component group term estimate std.error conf.low conf.high ess
ran_pars cond Residual sd__Observation 5.010808 0.6489197 3.932789 6.461536 3072.006
ran_pars cond Residual prior_sigma__NA.NA.prior_sigma 5.893894 6.9432256 0.161323 23.833297 3859.087

The posterior distribution for the effect of a manual transmission is here:

library(ggplot2)
as_draws_df(pairwise.fit) %>%
  ggplot(aes(x=b_transmissionmanual)) +
  geom_density(fill="blue") +
  geom_vline(xintercept=0,color="red",lty=2) +
  labs(y="",
       x="Effect of manual transmission (mpg)",
       title="Posterior probabilities") +
  theme_classic(base_size=16)

We didnt specify the model type (gausian is the default). We also used the default priors here, which were

prior_summary(pairwise.fit) %>% kable(caption="Default priors for a pairwise analysis of mpg vs transmission in the mtcars data")
Default priors for a pairwise analysis of mpg vs transmission in the mtcars data
prior class coef group resp dpar nlpar lb ub source
b default
b transmissionmanual default
student_t(3, 19.2, 5.4) Intercept default
student_t(3, 0, 5.4) sigma 0 default

This includes flat priors for the beta coefficients, student’s t distributions for intercept (centered around the mean mpg) and residual error (centered around zero).

What if I Want an ANOVA

Perhaps I only am interested in whether there is a difference between groups, but not pairwise differences (i.e an ANOVA). This can be done as well (again using default priors).

anova.fit <- brm(mpg~0+cylindars,data=mtcars.data, sample_prior = TRUE) #zero sets there to be no intercept, shows the mean for each group
anova.fit.null <- brm(mpg~0,data=mtcars.data, sample_prior = TRUE) #null model

#estimate the bayes factor
bayes_factor(anova.fit,anova.fit.null) -> anova.bf
post_prob(anova.fit,anova.fit.null) -> anova.pp

Now lets look at the results of those analyses comparasons. The bayes factor for the ANOVA is 3.4898088^{28} which is very extreme evidence for a difference between groups. The posterior probabilities are 1 (very hight) for the fitted model and 2.8829788^{-29} (very low) for the null model.

prior_summary(anova.fit) %>% kable(caption="Summary of priors for comparason between cylindar numbers on mpg")
Summary of priors for comparason between cylindar numbers on mpg
prior class coef group resp dpar nlpar lb ub source
b default
b cylindars4 default
b cylindars6 default
b cylindars8 default
student_t(3, 0, 5.4) sigma 0 default
#model fitting parameters
kable(data.frame(
  Parameter = names(rhat(anova.fit)),
  Rhat = format(rhat(anova.fit), nsmall = 5)),
caption="Rhat values for model testing association between mpg and cylindars (should b between 0.99 and 1.01 for convergence",
row.names = F)
Rhat values for model testing association between mpg and cylindars (should b between 0.99 and 1.01 for convergence
Parameter Rhat
b_cylindars4 0.9998450
b_cylindars6 1.0016103
b_cylindars8 1.0012933
sigma 0.9997617
prior_sigma 0.9997447
lprior 0.9997617
lp__ 1.0007648
tidy(anova.fit, effects = "ran_pars", ess = TRUE) %>% kable(caption="Model random effects for mpg vs cylindars")
Model random effects for mpg vs cylindars
effect component group term estimate std.error conf.low conf.high ess
ran_pars cond Residual sd__Observation 3.332159 0.460378 2.5931131 4.377553 3015.966
ran_pars cond Residual prior_sigma__NA.NA.prior_sigma 5.905686 7.034321 0.1814052 22.768172 3510.893
#create a teable of the pairwise hypotheses
rbind(hypothesis(anova.fit, "cylindars4>cylindars6")$hypothesis,
      hypothesis(anova.fit, "cylindars4>cylindars8")$hypothesis,
      hypothesis(anova.fit, "cylindars6>cylindars8")$hypothesis) %>%
  kable(caption="Pairwise hypothesis tests for cylindars on mpg")
Pairwise hypothesis tests for cylindars on mpg
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
(cylindars4)-(cylindars6) > 0 6.925078 1.592501 4.362640 9.505415 Inf 1.00000 *
(cylindars4)-(cylindars8) > 0 11.540329 1.367975 9.291548 13.788081 Inf 1.00000 *
(cylindars6)-(cylindars8) > 0 4.615250 1.517746 2.095993 7.108223 443.4444 0.99775 *
tidy(anova.fit) %>% kable(caption="Summary of model fit for mpg versus cylindars")
Summary of model fit for mpg versus cylindars
effect component group term estimate std.error conf.low conf.high
fixed cond NA cylindars4 26.657990 1.0052341 24.6871426 28.702840
fixed cond NA cylindars6 19.732912 1.2643864 17.1974290 22.209185
fixed cond NA cylindars8 15.117661 0.8903373 13.3453118 16.901897
ran_pars cond Residual sd__Observation 3.332159 0.4603780 2.5931131 4.377553
ran_pars cond Residual prior_sigma__NA.NA.prior_sigma 5.905686 7.0343208 0.1814052 22.768172
plot(anova.fit)

library(tidyr) #for pivot wider
as_draws_df(anova.fit) %>%
  select(starts_with('b')) %>%
  pivot_longer(cols=everything(),
             names_to = "term",
             values_to="mpg") %>%
  ggplot(aes(x=mpg,fill=term)) +
  geom_density() +
  geom_vline(xintercept=0,color="red",lty=2) +
  labs(y="",
     x="Miles Per Gallon",
     title="Posterior probabilities") +
  scale_fill_discrete(name="") +
  theme_classic(base_size=16) +
  theme(legend.position="top")

What is a Linear Regression Equivalent?

Lets start by testing if there is a relationship between two quantitative variables, the mpg (miles per gallon) and the weight (wt) using the default priors

linear.fit <- brm(mpg~wt,data=mtcars,
                  sample_prior = TRUE)

Lets see what this looks like

prior_summary(linear.fit) %>% kable(caption="Prior summary for effects of weight on mpg")
Prior summary for effects of weight on mpg
prior class coef group resp dpar nlpar lb ub source
b default
b wt default
student_t(3, 19.2, 5.4) Intercept default
student_t(3, 0, 5.4) sigma 0 default
tidy(linear.fit) %>% kable(caption="Summary of model fit for mpg versus weight")
Summary of model fit for mpg versus weight
effect component group term estimate std.error conf.low conf.high
fixed cond NA (Intercept) 37.281958 1.9944452 33.329685 41.141723
fixed cond NA wt -5.347938 0.5933914 -6.509334 -4.197569
ran_pars cond Residual sd__Observation 3.146442 0.4190495 2.454004 4.105158
ran_pars cond Residual prior_sigma__NA.NA.prior_sigma 5.951883 6.5251426 0.193961 22.365550
plot(linear.fit)

hypothesis(linear.fit, "wt<0") # testing for whether weight has a negative effect on mpg
Hypothesis Tests for class b:
  Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
1   (wt) < 0    -5.35      0.59    -6.32    -4.36        Inf         1    *
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
as_draws_df(linear.fit) %>%
  ggplot(aes(x=b_wt)) +
  geom_density(fill="blue") +
  geom_vline(xintercept=0,color="red",lty=2) +
  labs(y="",
       x="Effect of Weight (mpg/1000 kg)",
       title="Posterior probabilities") +
  theme_classic(base_size=16)

Notice that the priors were the same here (they are based on the dependent variable), and again there is a highly probable inverse relationship between mpg and weight (heavier cars get lower fuel economy).

What if I am more interested in the R-squared?

To do this we can use the bayes_R2 function.

kable(bayes_R2(linear.fit),caption="Estimates for R2 between weight and mpg")
Estimates for R2 between weight and mpg
Estimate Est.Error Q2.5 Q97.5
R2 0.7416091 0.0472108 0.6223189 0.7978628
r2.probs <- bayes_R2(linear.fit, summary=F) #summary false is to get the posterior probabilities
ggplot(data=r2.probs, aes(x=R2)) +
  geom_density(fill="blue") +
  geom_vline(xintercept=0,color="red",lty=2) +
  labs(y="",
       x="R2",
       title="Posterior probabilities") +
  lims(x=c(0,1)) +
  theme_classic(base_size=16)

What is a Chi-Squared Equivalent

First lets do an example with a standard \(\chi^2\) test (and a Fisher’s test since the counts are quite low) on whether there is a relationship bewteen engine type and transmission type.

library(tidyr) #for pivot wider
library(tibble) #for column to rowname
engine.trans.counts <-
  mtcars.data %>%
  group_by(engine,transmission) %>%
  count() %>%
  pivot_wider(names_from=transmission,values_from=n) %>%
  column_to_rownames('engine')

chisq.test(engine.trans.counts) %>% tidy %>% kable(caption="Chi-squared test for engine/transmission")
Chi-squared test for engine/transmission
statistic p.value parameter method
0.3475355 0.5555115 1 Pearson’s Chi-squared test with Yates’ continuity correction
fisher.test(engine.trans.counts) %>% tidy %>% kable(caption="Fisher's test for engine/transmission")
Fisher’s test for engine/transmission
estimate p.value conf.low conf.high method alternative
0.511233 0.4726974 0.0944144 2.614145 Fisher’s Exact Test for Count Data two.sided

Both agree, not much of a relationship here. For the brms modelling we need to make a few changes. First, we will use a bernoulli distribution since our data is only zeros and ones, again we will use all the default priors.

# Fit the model
counts.model <- brm(engine ~ transmission, 
           data = mtcars.data, 
           family = bernoulli())

Lets look at these results

prior_summary(counts.model) %>% kable(caption="Prior summary for effects of transmission on engine type")
Prior summary for effects of transmission on engine type
prior class coef group resp dpar nlpar lb ub source
b default
b transmissionmanual default
student_t(3, 0, 2.5) Intercept default
tidy(counts.model) %>% kable(caption="Summary of model fit for transmission versus engine type")
Summary of model fit for transmission versus engine type
effect component group term estimate std.error conf.low conf.high
fixed cond NA (Intercept) 0.5564968 0.4787228 -0.3322844 1.5439365
fixed cond NA transmissionmanual -0.7260799 0.7635121 -2.2286394 0.7678828
plot(counts.model)

hypothesis(counts.model, "transmissionmanual<0") # testing for whether weight has a negative effect on mpg
Hypothesis Tests for class b:
                Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
1 (transmissionmanual) < 0    -0.73      0.76    -1.97     0.52       4.87
  Post.Prob Star
1      0.83     
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
as_draws_df(counts.model) %>%
  ggplot(aes(x=b_transmissionmanual)) +
  geom_density(fill="blue") +
  geom_vline(xintercept=0,color="red",lty=2) +
  labs(y="",
       x="Beta coefficient for manual transmission",
       title="Posterior probabilities") +
  theme_classic(base_size=16)

Now in this case there is moderate evidence for a negative relationship between transmnission and engine type (\(\beta\)=-0.7260799 \(\pm\) 0.7635121) with a Bayes Factor of 4.8651026 and a Posterior Probability of 0.8295.

What is a Binomial Regression Equivalent?

Lets now look at the relationsbip between transmission type (binomial variable) and weight (continuous variable). Again we will use a bernouli distribution (which will use, by default a logit link function)

# Fit the model
binomial.fit <- brm(transmission ~ wt, 
           data = mtcars.data, 
           family = bernoulli())
prior_summary(binomial.fit) %>% kable(caption="Prior summary for effects of transmission on engine type")
Prior summary for effects of transmission on engine type
prior class coef group resp dpar nlpar lb ub source
b default
b wt default
student_t(3, 0, 2.5) Intercept default
tidy(binomial.fit) %>% kable(caption="Summary of model fit for transmission versus engine type")
Summary of model fit for transmission versus engine type
effect component group term estimate std.error conf.low conf.high
fixed cond NA (Intercept) 14.516094 5.252784 6.173255 26.369970
fixed cond NA wt -4.800125 1.668465 -8.550785 -2.122508
plot(binomial.fit)

hypothesis(binomial.fit, "wt<0") # testing for whether weight has a negative effect on mpg
Hypothesis Tests for class b:
  Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
1   (wt) < 0     -4.8      1.67    -7.78    -2.47        Inf         1    *
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
as_draws_df(binomial.fit) %>%
  ggplot(aes(x=b_wt)) +
  geom_density(fill="blue") +
  geom_vline(xintercept=0,color="red",lty=2) +
  labs(y="",
       x="Beta coefficient for weight on transmission",
       title="Posterior probabilities") +
  theme_classic(base_size=16)

Again there is strong evidence that a higher weight makes an automatic transmission more likely.

Hopefully these examples helped, but a couple things since we used defaults.

Think closely about your priors, if you have a good reason to set them to something other than the default you should. In this case the defaults worked pretty well and as you can see are set based on the data that is input. These are generally very weakly informative priors and the modelling could be improved on by setting your own.

Also remember, nowhere in here was there a p-value. We could consider a posterior probability of >0.95 our cutoff for significance if we prefer, but make sure to state this in your methods (along with your choice of priors and the package used.)

Note this script used some examples generated by perplexity.ai and then modified further

Session Info

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-apple-darwin20
Running under: macOS Monterey 12.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Detroit
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] tibble_3.2.1        tidyr_1.3.1         ggplot2_3.5.1      
[4] broom.mixed_0.2.9.5 brms_2.21.0         Rcpp_1.0.13        
[7] dplyr_1.1.4         knitr_1.48         

loaded via a namespace (and not attached):
 [1] gtable_0.3.5         tensorA_0.36.2.1     xfun_0.46           
 [4] QuickJSR_1.3.1       processx_3.8.4       inline_0.3.19       
 [7] lattice_0.22-6       callr_3.7.6          vctrs_0.6.5         
[10] tools_4.4.1          ps_1.7.7             generics_0.1.3      
[13] stats4_4.4.1         parallel_4.4.1       fansi_1.0.6         
[16] pkgconfig_2.0.3      Matrix_1.7-0         checkmate_2.3.2     
[19] distributional_0.4.0 RcppParallel_5.1.8   lifecycle_1.0.4     
[22] farver_2.1.2         compiler_4.4.1       stringr_1.5.1       
[25] Brobdingnag_1.2-9    munsell_0.5.1        codetools_0.2-20    
[28] htmltools_0.5.8.1    bayesplot_1.11.1     yaml_2.3.10         
[31] pillar_1.9.0         furrr_0.3.1          StanHeaders_2.32.10 
[34] bridgesampling_1.1-2 abind_1.4-5          parallelly_1.38.0   
[37] nlme_3.1-164         posterior_1.6.0      rstan_2.32.6        
[40] tidyselect_1.2.1     digest_0.6.36        mvtnorm_1.2-5       
[43] stringi_1.8.4        future_1.34.0        reshape2_1.4.4      
[46] purrr_1.0.2          listenv_0.9.1        labeling_0.4.3      
[49] splines_4.4.1        forcats_1.0.0        fastmap_1.2.0       
[52] grid_4.4.1           colorspace_2.1-1     cli_3.6.3           
[55] magrittr_2.0.3       loo_2.8.0            pkgbuild_1.4.4      
[58] utf8_1.2.4           broom_1.0.6          withr_3.0.0         
[61] scales_1.3.0         backports_1.5.0      rmarkdown_2.27      
[64] matrixStats_1.3.0    globals_0.16.3       gridExtra_2.3       
[67] coda_0.19-4.1        evaluate_0.24.0      rstantools_2.4.0    
[70] rlang_1.1.4          glue_1.7.0           jsonlite_1.8.8      
[73] plyr_1.8.9           R6_2.5.1